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ABSTRACT

We study the stability of spectral approximations to scalar hyperbolic initial-boundary

value problems with variable coefficients. Time is discretized by explicit "multi-level or Runge-

Kutta methods of order < 3 (forward Euler time differencing is included), and we study

spatial discretizations by spectral and pseudospectral approximations associated with the

general family of Jacobi polynomials. We prove that these fully explicit spectral approx-

imations are stable provided their time-step, At, is restricted by the CFL-like condition,

At < Const.N - 2 , where N equals the spatial number of degrees of freedom. We give two in-

dependent proofs of this result, depending on two different choices of appropriate L 2-weighted

norms. In both approaches, the proofs hinge on a certain inverse inequality interesting for

its own sake. Our result confirms the commonly held belief that the above CFL stability

restriction, which is extensively used in practical implementations, guarantees the stability

(and hence the convergence) of fully-explicit spectral approximations in the non-periodic

case.
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1. INTRODUCTION.

We are concerned here with fully-discrete spectral and pseudospectral approximations to

scalar hyperbolic equations. In this context, the spectral (and respectively, the pseudospec-

tral) approximations consist of truncation (and respectively, collocation) of N-term spatial

expansions, which are expressed in terms of general Jacobi polynomials; Chebyshev and Leg-

endre expansions are the ones most frequently found in practice. In this paper we prove that

such N-terms approximations are stable, provided their time-step, At, fulfills the CFL-like

condition, At < Const.N - 2 . To clarify the origin of such CFL-like conditions in our case,

we recall that the Jacobi polynomials are in fact the eigenfunctions of second-order singular

Sturm-Liouville problems. Our arguments show that the main reason for the above CFL

limitation is the O(N) growth of the corresponding N-eigenvalues associated with these

Sturm-Liouville problems.

The paper is organized as follows. Section 2 includes a brief summary on the properties

of Jacobi polynomials (and their quadrature rules) which are used throughout the paper.

In Section 3 we state our main stability theorems for Forward Euler time-differencing and

(pseudo-)spectral spatial differencing, for constant coefficients equations with homogeneous

boundary conditions. Section 4 extends our stability results to the inhomogeneous case. In

Section 5 we discuss multi-level and Runge-Kutta time differencing. Finally, in Section 6 we

show how to extend our results in the presence of (positive) variable coefficients.

2. VERY SHORT GUIDE TO JACOBI POLYNOMIALS.

Jacobi polynomials, Pk"O, are the eigenfunctions of the singular Sturm-Liouville problem

(2.1a) ((k- X(X)w(X)P c)(x)) + Ak(x)P("h)() = 0, -1 <X < 1,

with corresponding eigenvalues Ak,

(2.1b) Ak = Ak(a,#) = k(k + a + p + 1).

Different families of Jacobi polynomials are associated with different weight functions w(x),

(2.1c) w(x) = w(x;a,3)=( X)(1 + X), a,3> -1.

In the sequel we shall frequently use several properties of the Jacobi polynomials. A brief

summary of these properties is given below (consult e.g. [13]). We start with the well-known

PROPERTY 1 (Orthogonality). We have

(2.2) (0P),P("'/)(.)=O, j 7 k.



The derivatives of Jacobi polynomials are also Jacobi polynomials. This is evident from
the following property which shows that {P-'}k)'>0 are orthogonal with respect to the

weight (1 - x')w(x) w(x; a + 1,# + 1) and hence

(2.3) A = Constk,.a,PP ( 't+ ' +1 ', Constk,,, = l(k + a + 6 + 2).

PROPERTY 2 (Orthogonality of derivatives). We have

(2.4) (P(C"A)' P('-A))(_2)X) = 0, j /
11 (.-..0)', 2 0) 2(..)

(2.5) IIP' II(,-2 )w,.) = AII, ',, I( ).

Indeed, (2.4) and (2.5) follow from integration by parts of (2.1) against P' )(x).

Let rN denote the space of algebraic polynomials with degree < N. A useful consequence

of the last two properties is provided by

LEMMA 2.1 (Inverse inequality). For all PeiN we have

(2.6) IIp'l(j-z,)W(=) < VA-QIpl<.=(), .7rN.

Here w(x) stands for an arbitrary w(x; a, 3) weight, and AN = AN(a, 0) is the corresponding

N-th eigenvalue.

Remarks.

1. The inequality (2.6) can be viewed as the algebraic analogue of the trigonometric

inverse inequality,

(2.7a) IP'IIL2[-.,.] < NllPllL2[-.,],, p = any N - trigonometric polynomial.

This should be contrasted with a similar L2-inverse inequality for algebraic polynomials

where there is a loss of N 2-factor for each derivative [31,

(2.7b) (jP'jiL2[-I,j] < Const. N 2iPIIL2,[_I,, p = any N - algebraic polynomial,

and this estimate, (2.7b), is sharp in view of, e.g., PN(X) = =o Pk-'- (x). Thus, the use

of the different weighted L 2-norms in the algebraic case, (2.6), is essential in order to retain

a loss of only IXi - N-factor for each derivative.
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2. The inverse inequality (2.6) can be viewed as an L2-weighted version of Bernstein's
inequality

11(1 - x2) p'(,)lL..[-1,1] < NiiP(X)IIL-[-1,i], PErN.

Standard interpolation arguments between this LO-type estimate and the L2-type estimate

(2.6) yield for q > 2

(2.7c) I1(1 - x2)fr'(x)II,.,- _ AX(c,,3)" IIP,L(,1., PERN.

Similar weighted Lq-type estimates apply to higher derivatives.

PROOF. Given p(z) in 7rN, we will use its Jacobi expansion, p(x) = EN=o akP( ,()(X)
and p'(x) = E'0 akPk(2'8 )'(x). Starting with the left-hand side of (2.6) and using (2.4), (2.5)
and (2.2) in this order, we obtain

N N
S) 2  2 11 p(-'0)' 2 2 P(-,9) < N(RHS).(LHS) = a411. jjj.2.. <EXa

k=O =O

We note in passing that Lemma 2.1 can be generalized to higher derivatives: successive

application of (2.6) with w(z) = w(x;a, /3) yields

k-i

(2.8) Ilp()(X)II (1.2)Z) !5 1- AN(Q + j,f3 + j)-IIp(x)II ), l 7rN.
j=0

This leads us to a 'natural' definition of non-periodic Sobolev spaces equipped with finite

Hj(,)-norm, where,

(2.9) jI~jjj, ll=,. j jj()IIl)1111 I Iv (l,),,,, 2
(9).) k=O

With this in mind, we now recover a sharp inverse inequality familiar from the trigonometric

setup

(2.10) IIPlIH(.) Const,. N'IlpllI,.), Const -- 1 + 2-, pEWN.

In the above discussion we can replace integrals by discrete summations in view of the

well-known

PROPERTY 3 (Gauss quadrature rule). Let {qN(X)}N>o be a family ofrrN-polynomials

orthogonal w.r.t. the w(x)-weighted L2 inner product. Let -1 < z < X2 ... < XN < 1 be
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the N zeroes of qN(x). Then there exists positive discrete weights, {wi}j'L 1 , such that for all

Pf.r2N-1 we have

1 N

(2.11) Jw()p(x)dx = Nwjp(x), Pf.r2N-1.
f1 i=1

Remark. To compute the Gauss weights we set p(x) = in (2.11). Since p(xj) = 0, j / k,Z- k

(2.11) yields

1 / 1 wzqN~z)d,
(2.12) wk= , < k < N.

PROOF. We have p(x) = t(x)qN(X) + r(z) for some t(x) and r(x) in 7N-1. The choice

of weights in (2.12) guarantees that (2.11) is valid for 7wrN_1-polynomials, for

s - X) l<k<N

This together with our assumption that qN(x) is L,( )-orthogona1 to lrN.1 imply

N N

Aw(x)p(x)dx =Jw(x)r(x)dx E wjr(x,) E wip(x,).
11 j=1

EXAMPLES.

1. Gauss-Jacobi quadrature rule. By Property 1, (2.11) applies to {PN('a)}N>1 with

w(x) = w(x; a, 13). Hence there exist {wj = wf(a,f3)} =' such that

1 N

(2.13) w /_ (x) dx = yj wjp(xj), for all pE7r N1.
_I j=1

Remark. The Gauss-Jacobi quadrature rule (2.13) can be used as a highly accurate quadra-

ture rule for general smooth, not necessarily polynomial functions. The error incurred in

such cases is governed by [4, p. 75]

1 N

(2.14) _ w(X)f(x) - Ewjf(x,)= Const. f(2N)( 9 ), Const. > 0, 101 < 1.
j=1
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2. Gauss-Lobatto-Jacobi quadrature rule. By Property 2, (2.11) applies to -A+.>

with w(x) = (1- X2)w(X;a,#), and therefore, there exist {D, = w((a + 1,,3 + 1)} N such

that
1 N

(2.15) 1_(l - X2)w(X)r(x)dx = E @jr(xj), for all rf7r2N_.
j=1

This is in fact a special case of the Gauss-Lobatto-Jacobi quadrature rule which is exact for

all pe7r2N+l. Indeed, for all such p's we have p(x) = (1 - X 2 )r(x) + I(x) with r(x) in 7r2N .1

and a linear I(x) = p(-1)i + p(1)T+. By (2.15)

f-1 w(x)p(x)dx = E;'l i-r(xi) + f I w(x)t(x) =

'-7p(xj) + f11 W(X)(X) - Z t(xj) = I + II + III.

Thus, we have

N t v 1_I = = =)

j=1- 2  1-xw

and the two expressions, II + III, amount to a linear combination of p(-1) and p(l)

I +III=wp(Xo) + WN+lp(XN+1), X0 =-i <X1 <...< XN < 1 XN+I.

Hence, there exist {w, = WN(a, p)}_s t= w# a j}=o  such that

1 N+1

(2.16) w(x)p(x)dx = wjp(x,), for all peTr2N+l. 011 j=O

Finally, we shall need some information on the behavior of the collocation points which

appear on the right of (2.13) and (2.16). We have

PROPERTY 4 (Distribution of zeros). If xj = cos 0j is the j-th zero of P('o)(x), then

[1, p. 287] NOj is a corresponding zero of Bessel's function, and hence

1- x= sin 2 9,- _ ConstjN - 2 for jcJ={l<j<jo, N-j0<j<N}.

Thus, the zeros of P("O)(x) are accumulated within O(N- 2) neighborhood of {-1, + 1}. More

precise estimates, e.g., [12, p. 19] yield

1 N2

(2.17) < <N.
1 - x7 2(1 + a)' -jN



3. FORWARD EULER WITH HOMOGENEOUS BOUNDARY CONDITIONS.

We start with the scalar constant coefficient hyperbolic equation,

(3.1) ut = au, (x,t)E[-1,1] x [0,oo), a> O,

which is augmented with the homogeneous condition at the inflow boundary,

(3.2) u(1,t) = 0, t > 0.

To approximate (3.1), we use the forward Euler time differencing on the left, and either

spectral or pseudospectral differencing on the right. Thus, we seek a temporal sequence of

spatial lrN-polynomials, v' = VN(X, t' = mAt), such that

(3.3a) VN(Z,t- + At) = VN(, tn) + At- V(X,t m )- + At. 'r(tm )qN(X).

Here, qN(x) is a rN-polynomnial which characterizes the specific (pseudo)spectral method we

employ, and T = r(t-) is a free scalar multiplier to be determined by the boundary constraint

(3.3b) VN(X = 1, t"n) = 0.

We shall study the spectral-Jacobi tau methods, [8],[2], where

(3.4) VN(X, tn + At) = VN(X, t') + At. av' (x, tn) + At. -r(tn)qN(x), qN(x) =

and the pseudospectral-Jacobi methods, [5],[2], which are collocated at the interior extrema
of P( ) i.e.,

SN+1

(3.5) VN(X, tn + At) = VN(X, tn) + At. av' (x, t') + At. T(tn)qN(X), qN(X) P( l()"

Remark. These two families of spectral and pseudospectral Jacobi methods are closely related

since P(21)'(x) is a scalar multiple of P("+,) (x), consult (2.3). We will not discuss here a

different alternative to (3.5) where one collocates at the interior extrema of P(a"o)(x) together

with the downstream outflow boundary so that

(3.6) qN(x) = (1 + X)P()'

Let -1 < x, < x2 < ... < XN < 1 be the N-different zeros of the forcing polynomial

qN(x). The spectral approximation (3.3a) restricted to these points reads

(3.7a) VN(X,t"+l) VN(X,t")+ At.av'(x,t m ), 1 < N,
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and is augmented with the homogeneous boundary condition

(3.7b) VN(1, t) = 0.

Equations (3.7a), (3.7b) furnish a complete equivalent formulation of the spectral approxi-

mation (3.3a), (3.3b). An essential ingredient in a stability theory of such approximations

lies in the choice of appropriate L 2-weighted norms

N
(3.8) 11f W111 =< fW, f W) >, < fW, g(x) >= E ujf (xj)g(xj).

j=1

We make

DEFINITION 3.1 (Stability). The approximation (3.7a), (3.7b) is stable if there exist

discrete weights, {wj > 0} =1, and a constant 710 independent of N, such that

(3.9) IjVN( ", t)llj, <_ Const.e"Tll'V,,(- , 0)1l,,.

The approximation (3.7a), (3.7b) is strongly stable if (3.9) holds with Const. = 1 and 77o :5 0,

i.e., if

(3.10) IIVN(., t)I. _< IIVN(.,0)ll1.

We recall that in the Jacobi-type spectral approximations (3.4) and (3.5), the nodes
{xj}j N are the zeros of Jacobi polynomials associated with the Gauss and Gauss-Lobatto

quadrature rules. We use

(3.11) Axmn = rin(1 + x 1, 1 - XN)

to measure the minimal gridsize associated with these Gauss nodes. Our choice of discrete

weights {wj} _= for the stability of the spectral and pseudospectral-Jacobi methods (3.4),

(3.5) will be specified later on; these weights are related (but not equal) to the corresponding

Gauss weights {w,}N= indicated earlier.

With this in mind we have

THEOREM 3.1 (Stability of the spectral and pseudospectral Jacobi methods). Con-

sider the spectral approximations (3.7a), (3.7b), associated with the Jacobi-tau method (3.4)

or the pseudospectral-Jacobi method (3.5). There exists a positive constant 77o = 77o(a, /3) > 0

independent of N, such that if the following CFL condition holds

(3.12) At a AN-i + A) < 77o,
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then the approximation (3.7a), (3.7b) is strongly stable and the following estimate is fulfilled

(3.13) JIVN(.,It)ll. _ e-"ntjVN(.,O)j..

Notes.

1. The choice of LP-weighted norms. Theorem 3.1 deals with the stability of both the
spectral-tau methods associated with Jacobi polynomials P("o)(x), a,,3(-1, 0), and with

the closely related pseudospectral methods associated with P(x")', a, 3f(-1, 0). In each
case we give two different stability proofs which are based on two different choices of discrete

L-weighted norms; these discrete weights {wj} ' are given by

(3 ) + where fw} Gauss - Jacobi weights in (2.13),(3.14a) = 1 - x w here =

(3.14b) wj = (1 + xj)wj, where {wi}'L 1 = Gauss - Lobatto Jacobi weights in (2.16).

2. The CFL condition. The CFL condition (3.12) places an O(N - 2) stability restriction
on the time-step At, and this stability restriction involves two factors. First, since we expand
our solution in terms of the eigenfunctions of the Sturm-Liouville problem (2.1), the CFL
condition involves the corresponding (N - 1)-th eigenvalue

(3.15a) A N-I -=_ AN-I (Of,/O) < N 2 , a , pf(_1, 1).

Second, the spectral Jacobi approximation (3.7a) is collocated at Gauss nodes which are
accummulated within O(N - 2 ) neighborhoods near the boundaries, i.e., by (2.17),

1 N2
(3.15b) 2(1 N a)

Thus, in view of (3.15a), (3.15b), the CFL condition (3.12) boils down to
l±a

(3.16) At. a. 2 < Const., Const. = o70 > 0.

3. The choice of a stability norm. The stability statement asserted in Theorem 3.1 is

formulated in terms of discrete semi-norms, 11 11, which are w-weighted by either (3.14a) or
(3.14b). We note that . are in fact well-defined norms on the space of 7rN-polynomials
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satisfying the vanishing boundary condition (3.7b), i.e., corresponding to (3.14a) or (3.14b)

we have

(3.17a) IIVN(.,t)ll. = X ' x,, t) dx, VN(1,t) = 0,

(3.17b) IIVN, t) I 1w L w(x)(1 + z)v (x,t)dx, VN(1,t) = 0.

(3.17b IVv(.,1ll t) =

Moreover, in view of (3.15b), one may convert the stability statement (3.13) into the

usual L 2-type stability estimate at the expense of possible algebraic growth which reads

(3.18) IIvN(, t)I (.)< 1+_ e- '° t IIVN( ' , 0)11.(.), IVN(., t) J w(x)v (x, t)dx.

4. Exponential time decay. Let us integrate by parts the differential equation (3.1)

against (1 + x)u. Thanks to the homogeneous boundary condition (3.2) we find

(3.19)/d (1 + X)U2(X, t) dx <- _ 1 + X)U2 (X, t)dx,

and therefore,

(3.20) Iu(., t)lll+. _< e-1Q,1 u(., 0)11+.

This estimate corresponds to the special case of the stability statement (3.13) for the spectral-

Legendre tau method (a = 8 = 0) weighted by (3.14b). The exponential time decay indi-

cated in (3.20) and more generally in (3.13), is due to the special choice of w-weighted

stability norms. The weights {wj} =1 in (3.14a), (3.14b) involve the essential factors 1 + xj

or '+'j which amplify the inflow boundary values in comparison to the outflow ones. Since in

the current homogeneous case, vanishing inflow data is propagating into the domain, this re-

sults in the exponential time decay indicated in (3.20) and likewise in the stability statement

(3.13).

5. The inflow problem. A stability statement similar to Theorem 3.1 is valid in the inflow

case where a < 0. Assume that the CFL condition (3.12) holds with 77o = 770(O, a), then
(3.13) follows with discrete weights w = iT-,+j or Wi= (1 - )w.

The rest of this section is devoted to the proof of Theorem 3.1 according to the various

cases outlined in the four lemmata below. We start with
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LEMMA 3.2 (Stability of the spectral-tau method). Consider the spectral-Jacobi-tau

method (3.4). Then Theorem 3.1 holds with

(3.21 a) = {w w'(a,I3)} = Gauss - Jacobi weights,
(3.21a) 'j= 1 --- =- Ww '=

21~(1+,3),a+3 ,

(3.21b) ro 7- o(a,)= a,tfe(-1, 1).1 '(1- a), a +,8 0.

PROOF. Squaring of (3.7a) yields

IIVN(.,t-+)w = IIN(',t )WI+

(3.22) +2At a < V(., t),v'(.,t ) > +(At a)2t t n(, ) =

= IIVN(., )112 + 2At . al + (At -a) 2II,

and we turn to estimate the two expressions, I and II, on the right of (3.22).

First let us note that since the lrN-polynomial VN(X, tn) vanishes at the inflow boundary,

(3.3b), we have

(3.23) VN(Xti) =(1 - x)p(x) for some p(x) = pN-i(x)ErN-1.

Also, a straightforward computation shows that

(3.24) (W(X)1--)'(1 - X)2 c[ + 2) - (3 + )x]w(r) > 47iow(x), Ix1 < 1,

where 770 = 770(a, P3) is given in (3.21b).

Now, since '±_vN(X, tin)v (x, ti)er 2 N-1, Gauss quadrature rule (2.11) implies

N 1+ 1
I= Ejwj 1  VN(x,t')vN(x, t) =]w(X) -F_ N(X,t)VN(x,t')dx.

We integrate by parts the RHS of I, substitute vN(x, ti) = (1 - x)p(x) from (3.23), and in

view of (3.24) we obtain

(3.25) I -j (w(x ) ' . - .X)2p2 (x)dx < -270iipIIW(,).

Next, let us consider the second expression, II, on the right of (3.22). As before, we substitute

VN(,t) = (1 - x)p(x) from (3.23) and obtain
N lz

II jv,(.,ti")I = [(1 - xj)p'(xj) - p(x)] 2 <
j=li 1 X3

10



N N

2E ~w,(1 - x )(p'(xj)) + 2Ewi p2(x,) = II, + 112.
j=1 j=1

Since (1 - x2)(p'(X)) 2 fr 2N_2, the Gauss quadrature rule (2.13) followed by the inverse in-

equality (2.6) implies

N

I1l _= 2 (1 - X )(p'(xj)) 2  pI112 1IpIp223i 0 _- 2),,(-)< 2AN-1 wp}(z) PEW.
.=1

This together with the obvious upper-bound

112 L2 i p2(Xj)p2(xi) 4 IP[[ (z),

j=1 AXmin

gives us

(3.26) II (2AN_ + A4) JPH11().

Equipped with (3.25) and (3.26) we return to (3.22) to find

(3.27) IVN(.,t+)LIW< VN(.,t )1W - 2At* a 27 0-At' a AN- ±-2)] I+ll(c)

The CFL condition (3.21b) implies that the squared brackets on the right are nonnegative,

(3.28) 277o - At. a AN-1 + A )]2- 70> 0,

and hence strong stability.

In fact, one more application of the Gauss quadrature rule yields

IlPll,(.) = Z wjP 2 (Xj) = WZ j (,N .

(3.29)

> Z'N V+:~2 (X,,tn) t-i_> jj(j,) I~VN(-, 'lS

The inequalities (3.29), (3.28) together with (3.27) imply

(3.30) IIVN(, tm+l)l11 < (1 - 27roAt
• a)IIvN(., t,)112

and the result (3.13) follows. El

Next, we take advantage of the rather general setup we employed in Lemma 3.2. Specif-

ically, since P(N1 )' is proportional to P( consult (2.3), we may use Lemma 3.2 with

7/o(a, fi) replaced by 77o(a + 1, ,6 + 1) to conclude:
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LEMMA 3.3 (Stability of the pseudospectral method). Consider the pseudospectral-

Jacobi method (3.5). Then Theorem 3.1 holds with

(3.31a) 1 + 3 j w3, {W= W(a+1,#+j )N = Gauss - Jacobi weights,

(3.31b) 7o 7o(a,#3) 2 - > 0, a,/#e(-l,O).

As mentioned before, alternative proofs of Theorem 3.1 are possible. For example, fol-

lowing [6, Theorem 5.1] one may employ a stable norm weighted by w, = (1 + x,)w, instead

of the ws = wj weights used in (3.21a), (3.31a). We begin with

LEMMA 3.4 (Stability of the spectral-tau method revisited). Consider the spectral-

Jacobi tau method (3.4). Then Theorem 3.1 holds with

(3.32a) Wj = (1 + x,)w,, {w, = uG(a,3)}N = Gauss - Jacobi weights

2) + + 1 >0,
(3.32b) o = o(a,3) = a, Oe(-1,0).

1(1-8),a +/ + 1 < 01

PROOF. We square (3.7a) - this time using the inner product weighted by (3.32a),

IIVN(.,t"n+l)I, = W{VN(,t)jj + 2At " a < VN(., t'), vN(., t'i) > +

(3.33) +(At. a)2 1W(.,t)ll, =

= IvN(., t-)112 + 2At . aI + (At. a) 2 11,

and as before we have to estimate the two expressions on the right of (3.33).

The first expression, I, involves discrete summation of f(x) = (1 + X)VN(X, tm)VN'(X, tin),

and since f(x) is a 7r2N-polynomial, its N-nodes Gaussian sum is not an exact integral. The

essential observation here is that f(2N) = Const. > 0 in this case, and the error estimate

(2.14) tells us that the Gauss quadrature rule is upper bounded by

N I

(3.34) I w,(1 + X,)VN(X,, t")vN'(X,, t" ) <] w(X)(1 + X)VN(X, d
j=1

Let us recall that the homogeneous inflow boundary condition (3.7b) implies

(3.35) VN(X,t) = (1 - x)p(x), for some p(x) =pN_,(X)6WN-1.

12



Also, a straightforward computation shows

(3.36) (w(x)(l + x))'(1 - x) = [(0 - a + 1) - (a +±3 + 1)x]w(x) 477ow(x), Izll 1

where 77o = r/o(a, 3) is given in (3.32b).

We integrate by parts the RHS of I, substitute (3.35), and in view of (3.36) we obtain

(3.37) 1 2 j(w()(1 + x))'(1 - x) 2p'(x)dx < -277oiipIl'

Next, let us consider the second expression, II, on the right of (3.33). As before, we substitute

vN(x, t-) = (1 - x)p(x) from (3.35) and Gauss quadrature yields

I, = EZ== wj(1 + Xj)[(1 - x,)p'(x3) - p(X)] 2

(3.38) = f-i W(X)(1 - X2)(1 - X)(p,(X)) 2 - 2 f1 1 w(x)(1 - x 2 )p(x)p'(x)dx

+ f11 w(x)(l + x)p 2(x)dx = III + 112 + 113.

The inverse inequality (2.6) with weight w(x) = (1 - x)w(x) implies

IlIIIII, <) -)(l,(z) - AiII - J,-l -)w,(), ANN-i =A=N-(, + 1,13),

and integration by parts of 112 gives

112 + 113 = f_1 [(W(X)(1 - X2 )), + W(X)(1 + X)]p 2 (X)dx

< 2lip 2Ill() 2 E 1 w,= 1 p2- lip! 2 )(.J= 1-Xj 3 <

Consequently we have

(3.39) II< 2+ -  )i 2Pil1-)w(.)"

Equipped with (3.37) and (3.39) we return to (3.33) to find

(3.40) IVN(.,t'-+)112 < IIvr(.,t")11 - 2At .a [2770 - At .a (AN, + x)] IIPII1-),(z)

and the result follows along the lines of Lemma 3.2, consult (3.27). El

Lemma 3.4 does not cover the pseudospectral Jacobi methods, since by (2.6) the corre-
sponding Jacobi parameters a + 1,,3 + 1 V (-1,0). However, the proof of Lemma 3.4 can

be carried out in the pseudospectral case if we replace the Gauss quadrature rule by the

Gauss-Lobatto one. We omit the almost identical details (which are outlined for the variable
coefficients case in Theorem 6.2 below) and state

13



LEMMA 3.5 (Stability of the pseudospectral method revisited). Consider the pseu-

dospectral Jacobi method (3.5). Then Theorem 3.1 holds with

(3.41a) wj = (1 + x,)w,, {wj w.(a,/3)}l = Gauss - Lobatto - Jacobi weights,

2) a a I>0
(3.41 b) 70 = 7=( ,,e -1 )

(1-/3) , a3+ 1 < 0.

Remark. The stability asserted in Lemma 3.5 is stated in terms of the discrete semi-

norm JIVN(., t)lj = Z' wj(1 + Xj)vN(xj, t) weighted by the interior Gauss-Lobatto weights

{wj}'=. However, taking into account the homogeneous boundary condition (3.7b) and the

exactness of Gauss-Lobatto quadrature for lr2N+l polynomials, this amounts to
N+I

(t)II = E Wj(1 + Xj)v2(z, t) -/ w(x)(1 + x)v' (x, t)dx.

4. FORWARD EULER WITH INHOMOGENEOUS INITIAL-BOUNDARY

CONDITIONS.

We consider the inhomogeneous scalar hyperbolic equation

(4.1) ut=au..,+F(x,t), (x, t)E[-1,1] × [0, oo), a>0,

which is augmented with inhomogeneous data prescribed at the inflow boundary

(4.2) u(1,t) = g(t), t > 0.

Using the forward Euler time differencing, the spectral approximation of (4.1) reads, at the

N-interior zeros of qN(X),

(4.3a) VN(Xj, t' +) = VN(Xj, t'n) + At. av'(xj, t') + AtF(xj, t'), qN(x,) 0,

and is augmented with the boundary condition

(4.3b) VN(1, t ' ) = g(t').

In this section, we study the stability of (4.3), (4.4) in the two cases of

(4.4a) Spectral - Jacobi tau method: qN(x) N P(".,)(, ) a, c3(-1,0),

14



and the closely related

(4.4b) pseudospectral - Jacobi method: qN(x) N()' , Qe(-1 , 0).

To deal with the inhomogeneity of the boundary condition (4.3b), we employ a device

introduced in [6, Section 5]. Namely we consider the 7r-polynomial

(4.5) VN(x, VN(x,t) qN() t).
qN(1)

If we set

(4.6) F(x,t) F(x,t) + aq g(t)

then VN(x, t) satisfies the inhomogeneous equation

(4.7a) VN(xj, t'+') = VN(xj, tn) + At aVk(xj, t') + Atp(x,, tn),

which is now augmented by the homogeneous boundary condition

(4.7b) VN(1, t) = 0.

Theorem 3.1 together with Duhammel's principle provides us with a priori estimate of

JIVN(.,t)[!, in terms of the initial and the inhomogeneous data, [IVN(.,0)II. and 11P(., t)[[.

Namely, if the CFL condition (3.12) holds, then we have

(4.8) JIVN(-,t)l(. < e-"tlIVN(.,O)[I + E At. e-m"(t-t")[F(.,tm)I[w.
O<tm _t

Since the discrete norm . is supported at the interior zeros of qN(x) where VN(X,, t) =

VN(xj, t) we conclude

THEOREM 4.1 (Stability of the spectral tau and pseudospectral Jacobi methods). Con-

sider the spectral approximation (3.3a), (3.3b) associated with the Jacobi-tau method (4.4a) or

the pseudospectral-Jacobi method (4.4b). There exists a positive constant iio = io(a, ) > 0

independent of N, such that if the following CFL condition holds (consult (3.12)),

(4.9) At.a AN-1 A,2,) 5 77o

then the approximation (3.3a), (3.3b) satisfies the stability estimate

(4.10) ii~jjq, (.)lli()
IIVN(,t)II. K e- °°aILvN(,O)1 + E At. e - la(t - ' ) )jF(,tJn)j.+ a 1 )

O<t(<t aqN(1)1
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Theorem 4.1 provides us with a priori stability estimate in terms of the initial data,

VN(', 0), the inhomogeneous data, F(., t), and the boundary data g(t). The dependence on

the boundary data involves the factor of -1which grows linearily with N, as shown
Nby

LEMMA 4.2. Let {_yj =, be the discrete weights given by either (3.32a) or (3.41a).

Then there exists a constant independent of N such that

(4.11) jjqN(')jj, < Const. N.
IqN(1)-

Remark. The stability estimate (4.10) together with (4.11) imply

(4.12)

IIVN(-,t)j, < e-"O*'IIvN(',0)I1+ E At'e- "°({ '_) [llF(.,tm)ll, + Const.NAt . e-na(t t-)g(t)].
O<tm <t

An inequality similar to (4.12) is encountered in the stability study of finite-difference ap-

proximations to mixed initial-boundary hyperbolic systems f9). We note in passing that the

stability estimate (4.12) together with the usual consistency requirement guarantee the spec-

trally accurate convergence of the spectral approximation; consult [7] for the semi-discrete

case.

PROOF. We consider, for example, the spectral-tau method associated with qN(x) =

P(1")x) and with discrete weights w3 = (1 + xj)w9(a,,6). Using Gauss and Gauss-Lobatto

quadrature rules (2.13) and (2.16) in this order, we obtain

IIqfv()I 1 w(x)(1 + x)(P(='X?)'(x))2dx = 2w+ 1(a, )P()'(2,

and (4.11) follows in view of

L N 2-w~~1,8 -) < Const.N

Similar arguments (which are omitted) apply to the pseudospectral approximation associated

with qN(x) = P (x) and with discrete weights wj = (1 + xj)w(a, 3).

5. MULTI-LEVEL AND RUNGE-KUTTA TIME DIFFERENCING.

In the previous sections we proved the stability of spectral approximations which are

combined with the first order accurate forward Euler time differencing. In this section we
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extend our stability result for certain second and third order accurate multi-level and Runge-

Kutta time differencing, which were studied in [10], [11].

To this end we view our 7rN-approximate solution at time level t, v(-, t), as an (N +

1)-dimensional column vector which is uniquely realized at the Gauss collocation nodes

V(XN, t), v(1, t)).

The forward Euler time differencing with homogeneous boundary conditions (3.4), (3.5),

reads

(5.1a) v(t- + At) = [I + At. aL]v(tm ), a > 0,

where L is an (N + 1) x (N + 1) matrix which accounts for the spatial spectral differencing

together with the homogeneous boundary conditions

(5.1b) Lv(t m ) = (v'(xI, t.)..., v'(XN,, tm), 0).

Remark. The construction of a spectral differentiation matrix L can be accomplished in one

of two ways. One possibilty is carried out in the physical space, by exact differentiation

of the unique 7rN-interpolant which assumes the gridvalues v(x1 , t), ... , V(XN, t), v(1, t) at the

corresponding Gauss nodes. This leads to full (N + 1) x (N + 1) differentiation matrices

L, which are recorded for example in [2]. Spectral differencing in the physical space is

then carried out by a matrix-vector multiplication at the expense of O(N 2 ) operations.

Alternatively, spectral differentiation can be accomplished in the transformed space. In the

particular case of Chebyshev (pseudo-)spectral method, this leads to a factorization of the

corresponding differentiation matrix L, whose matrix-vector multiplication can be carried

out efficiently by FFT requiring O(NlogN) operations, consult [8],[2].

Theorem 3.1 tells us that if the CFL condition (3.12) holds, i.e., if

(5.2) At. -AN-1 + 2 --- 77-

then I + At • aL is bounded in the w-weighted induced operator norm,

(5.3) 111 + At . aLI,, < e- °'a*

Let us consider an (s + 2)-level time differencing method of the form

(5.4) v(t M + At) = :L Ok[I + ckAt. aLjv(tm-k), ck > 0, k > 0, k 1.
k=0 k=O

In this case, v(tin + At) is given by a convex combination of stable forward Euler differencing

dnd we conclude
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COROLLARY 5.1 (Multi-level time differencing). Assume that the following CFL con-

dition holds,

(5.5) At. -a AN-1 +/- <2-c, c 0, k = 0, ,...s
mAn" CkC

Then the spectral approximation (5.4) is strongly stable and the following estimate holds

(5.6) IIVN(-,t)ll: < e-"*IvN(',0)I , 7. = min - >0.k Ck

In [10], second and third order accurate multi-level time differencing methods of the

positive type (5.4) were constructed. They take the particularily simple form

(5.7) v(t' + At) = 0[I + coAt. aL]v(t-) + (1 - 0)[I + c.AtaL]v(t-°),

with positive coefficients given in Table 1.

Second-order time differencing 0 co c.

4-level method (s = 2) 1 2 0
4

5-level method (s = 3)3 09 2

Third-order time differencing

5-level method (s = 3) 1 3 127 11

6-level method (s = 4) 25 2 LO
32 7

7-level method (s = 5) 108 s 3O
125 3 17

Table 1. Multi-level methods.

Similar arguments apply for Runge-Kutta time differencing methods. In this case the

resulting positive type Runge-Kutta methods take the form

(5.8a) v(1)(tm+') = [I + At . aL]v(t m ),

(5.8b) (0)(t,,+,) = Okv(t) + (1 - 9hk)[1 + AtaL] v(k- 1 )(tm+l), k = 2,..-,

(5.8c) v(tm+l) = ,c.)(t,+i).
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We state

COROLLARY 5.2 (Runge-Kutta time differencing). Assume that the CFL condition

(3.12) holds. Then the spectral approximation (5.8a-c) with 0 < Ok < 1 is strongly stable and

the stability estimate (3.13) holds.

In Table 2 we quote the preferred second and third-order choices of [11].

Second order time differencing 02 03

Two-step modified Euler (s = 2) -

Third order time differencing

Three-step method (s = 3) 34 3

Table 2. Runge-Kutta methods

Remarks.

1. The above results can be extended to include nonhomogeneous data as well. We omit

the details.

2. In [10], [11], higher order accurate (> 3) multi-level and Runge-Kutta time differ-

encing schemes were constructed. In the present context (of constant coefficient spectral

approximations), they amount to convex combinations of the stable forward Euler differ-

encing I + At aL and its adjoint I - At • aL. The above argument does not cover these

cases, however, since in our case the stability of I ± At. aL is measured by different weighted

norms.

6. SCALAR EQUATIONS WITH VARIABLE COEFFICIENTS.

We begin with

EPILOGUE. When dealing with finite-difference approximations which are locally supported,

i.e., finite difference schemes whose stencil occupies a finite number of neighboring grid cells

each of which is of size Ax, then one encounters the hyperbolic CFL stability restriction

(6.1) At A Const.
AX 1

19



With this in mind, it is tempting to provide a heuristic justification for the stability of

spectral methods, by arguing that a CFL stability restriction similar to (6.1) should hold.

Namely, when Ax is replaced by the minimal gridsize, Ax ..i,, = min i Jxj+i - xil = O(N-),

then (6.1) leads us to

(6.2) At. laiN2 < Const.

Although the final conclusion is correct (consult (3.16)), it is important to realize that

this "handwaving" argument is not well-founded in the case of spectral methods. Indeed,

since the spectral stencil occupies the whole interval (-1,1), spectral methods do not lend

themselves to the stability analysis of locally supported finite-difference approximations. Of

course, by the same token this explains the existence of unconditionally stable fully implicit

(and hence globally supported) finite difference approximations.

As noted earlier, our stability proof (in Theorem 3.1) shows that the CFL condition (6.2)

is related to the following two points:

#1. The size of the corresponding Sturm-Liouville eigenvalues, AN-1 = O(N 2).

#2. The minimal gridsize, 1 _ O(N 2).

The second point seems to support the fact that Ax,,i plays an essential role in the CFL

stability restriction for the global spectral methods, as predicted by the local heuristic argu-

ment outlined above. To clarify this issue we study in this section the stability of spectral

approximations to scalar hyperbolic equations with variable coefficients. The principle raison

d'etre which motivates our present study, is to show that our stability analysis in the con-

stant coefficients case is versatile enough to deal with certain variable coefficients problems.

We begin with the particular example introduced in [8]

(6.3) ut = -xuZ, (x, t)E[-1,1] x [0, oo).

We shall show that the CFL stability restriction in this case is related to the O(N)-size

of the Sturm-Liouville eigenvalues (point #1 above), but otherwise it is independent of the

minimal gridsize mentioned in point #2 above.

Observe that (6.3) requires no augmenting boundary conditions, since both boundaries,

x = ±1, are outflow ones. Consequently, the various 7rN-spectral approximations of (6.3)

with forward Euler time differencing, read

(6.4) VN(X, t + At) = VN(X, t') - At. ,xv (z, t).

We have
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THEOREM 6.1 (Stability). Assume that the following CFL condition holds

(6.5) At'AN:51, ANr=N(N-f1).

Then the spectral approximation (6.4) is strongly stable and the following estimate is fulfilled

PROOF. Squaring (6.4) yields

IIVN(., tl)~ 2 = IVN( t+111_ t-)11 2.+

(6.7) -2At(VN(., ti),X v,(., t"))j..,2 1_X)I~v(, mI~ 2

= IVN(., 1-)IL2 + 2Att- 11 2 (At)2 . II.

Integration by parts shows that the first expression, I, is given by

(6.8) 1 _1 j((1 _ X2))lv(~md 2 -iv(, tDII12. 2 j x 2 (x, t')dx.

Next, we write xv' 4  (XVN) I- 17N, and by the inverse inequality (2.6) the second expression,

II, does not exceed

(6.9) 11 = II(XVN(X,tmIIZ 1-- Nx 'd (AN- 2)j N(x, tm)dx.

Inserting (6.8) and (6.9) into (6.7) we end up with

(6.10) IIVN(., t"'_)jL 2 _< (1 + At).- IjVN(., 1m)II 2 + ±At' [(AN -2)At - 2) .11 X VN(x, t)dx.

The CFL condition (6.5) tells us that the contribution of the second term is negative, fo'r

At[(AN - 2)At - 2] . JX' xVN(x 1_dX -tj(, m~ 2

and the strong stability estimate (6.6) now follows. 1

We now turn to disscuss scalar hyperbolic equations with positive variable coefficients

(6.11) Ut = a(x)u,, 0 < a(x) < a.., (x, t)c[- 1, 1] x [0, oo),

which are augmented with homogeneous conditions at the inflow boundary

(6.12) U(1, t) = 0.
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We consider the pseudospectral-Jacobi method collocated at the N-interior zeros of PN(+"01+ x).

Using forward Euler time differencing, the resulting approximation reads

(6.13a) VN(xj, t+l) =, N(Xj, t') + At. a(xi),v (x, t-), P,'-,x1 ) = 0,

together with the boundary condition

(6.13b) VN(1, t') = 0.

Arguing along the lines of Theorem 3.1, we have

THEOREM 6.2 (Stability of the pseudospectral Jacobi method with variable coefficients).

Consider the pseudospectral-Jacobi approximation (6.13a), (6.13b). There exists a constant
77o - 17o( a, ),

2 '+ + 1 >0,
(6.14a) 770 o(a,/) = 7, (a(-1, 0),

a-(1-±+ 1+ < 0,

such that if the following CFL condition holds

(6.14b) At a..AN_1 +- 2 max < 0,
1! <j<N 1 - xj -

then the approximation (6.13a), (6.13b) is strongly stable, i.e., there exist discrete weights

(6.15a) Wi = (1 + x)a -, {wj = W;(a,3)}=N - Gauss - Lobatto weights,
a(x,)

such fthat

(6.15b) IIVN(', t){{.:w _ j [ V(', 0)jj..

PROOF. We divide (6.13a) by V/i(5,

1 VN(x,, tm+l) -VN( , t) + At .(x) v(x, ti),

aa~x,)

and, proceeding as before, we square both sides to obtain

JIVN(',tin+1)1• =. (, )LN.tn12
(6.16) +2At < vN(-,tin), V,(., ti) > +(At)2 I a(.)v(' (.,ti)lj

= IIV(., tn),I + 2 t + (At)2 II.
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The first expression, I, involves discrete summation of the 7r2N-polynomial f(x) = (1 +

X)VN(,tm)V' (x,t') and since f(±1) = 0 (in view of (6.13b)), the (N + 1)-nodes Gauss-

Lobatto quadrature rule yields

N+1 1

E u(1 A- Xi)VN(Xi, t')V4(Xi,t') =1 w(X)(1 + X)VN(X,tm)V',(x,t-)dx.
j=O -1

We integrate by parts the RHS of I, substitute vN(X, t') = (1 - x)p(x) from (3.35), and in

view of (3.36) we obtain as before (compare (3.37)),

(6.17) I < -277ollpIl'(I))

The second expression, II, gives us

II = EZ;L wja(x,)(1 + xj)[(1 - xj)p'(Xj) - P(j)]2 <

(6.18) < 2a,. JZ=i wj(1 + xj)'(p'(x,))' + 2 ZN1 wja(x1 )(1 A xj)p2 (xj)

= 2aIIi + 112.

The inverse inequality (2.6) with weight w(x) = (1 - x)w(x) implies

.= uII,- AN1IIPII-)W(), AN,= AN_(a + 1,f)

and the expression 112 does not exceed

112 max [a(x j1 + Z N+1 2 -(max a(j) 11PI 12Xj E• ( - -jp(j) Ij5 1 - •j I ll-x)w x).
- - j=o

Consequently we have

(6.19) II < 2 (aOANI + 2. max 1a(xj) )J
Equipped with (6.17) and (6.18) we return to (6.16) to find

(6.20)

tmn+1)112 IvN&, 1\12- 2 A Aa(x,) '11P1IVN(, a+) <+ IV(, 2 max 1 At I2maIi~j<N 1 - Xt Jilpl-)(

and (6.18b) follows in view of the CFL condition (6.14b).

Notes.

1. The case a(xj) = a = Const. > 0, corresponds to the stability statement of Lemma

3.5. Similar stability statements with the appropriate weights which correspond to Lemmata
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3.2, 3.3, and 3.4, namely, wL and, w (1 + x)-!!f' hold. These statements3.2,3.3 an 3.4 naely w 1.-Xj o(z,),
cover the stability of the corresponding spectral and pseudospectral Jacobi approximations

with variable coefficients.

2. We should highlight the fact the stability assertion stated in Theorem 6.2 depends

solely on the uniform bound of a(x3 ) but otherwise is independent of the smoothness of a(x).

3. The proof of Theorem 6.2 applies mutatis mutandis to the case of variable coefficients

with a = a(x, t). If a(xj, t) are C'-functions in the time variable then (6.20) is replaced by

IIVN_, tM +1) l < (1 + Const.At)ljv(-, ' 1 = (1 + X3 ) t

and stability follows.

4. We conclude by noting that the CFL condition (6.14b) depends on the quantity

maxl<j<N !_51, rather than the minimal gridsize, I , as in the constant coefficient case

(compare (3.12)). This amplifies our introductory remarks in the beginning of this section,

which claim that the O(N -2 ) stability restriction is essentially due to the size of the Sturm-

Liouville eigenvalues, AN-1 = O(N 2 ). Indeed, the other portion of the CFL condition

requiring

At. 2 max a(x) < 0
1j<N 1 - x 71

guarantees the resolution of waves entering through the inflow boundary x = 1. In the

constant coefficients case this resolution requires time-steps At of size 1 . However, when

the inflow boundary is almost characteristic, i.e., when a(1) - 0, then the CFL condition

is essentially independent of Axzm, for (6.21) boils down to At - 2a'(1) S q70. In purely

outflow cases such as (6.3), the time-step is independent of any resolution requirement at

the boundaries and we are left with the CFL condition (6.5) stated in Theorem 6.1.
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